Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionThe effectiveness of neural interfacing devices depends on the anatomical and physiological properties of the target region. Multielectrode arrays, used for neural recording and stimulation, are influenced by electrode placement and stimulation parameters, which critically impact tissue response. This study presents a multiscale computational model that predicts responses of neurons in the hippocampus—a key brain structure primarily involved in memory formation, especially the conversion of short-term memories into long-term storage—to extracellular electrical stimulation, providing insights into the effects of electrode positioning and stimulation strategies on neuronal response. MethodsWe modeled the rat hippocampus with highly detailed axonal projections, integrating the Admittance Method to model propagation of the electric field in the tissue with the NEURON simulation platform. The resulting model simulates electric fields generated by virtual electrodes in the perforant path of entorhinal cortical (EC) axons projecting to the dentate gyrus (DG) and predicts DG granule cell activation via synaptic inputs. ResultsWe determined stimulation amplitude thresholds required for granule cell activation at different electrode placements along the perforant path. Membrane potential changes during synaptic activation were validated against experimental recordings. Additionally, we assessed the effects of bipolar electrode placements and stimulation amplitudes on direct and indirect activation. ConclusionStimulation amplitudes above 750 μA consistently activate DG granule cells. Lower stimulation amplitudes are required for axonal activation and downstream synaptic transmission when electrodes are placed in the molecular layer, infra-pyramidal region, and DG crest. SignificanceThe study and underlying methodology provide useful insights to guide the stimulation protocol required to activate DG granule cells following the stimulation of EC axons; the complete realistic 3D model presented constitutes an invaluable tool to strengthen our understanding of hippocampal response to electrical stimulation and guide the development and placement of prospective stimulation devices and strategies.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract Airborne transmission by droplets and aerosols is known to play a critical role in the spread of many viruses amongst which are the common flu and the more recent SARS-CoV-2 viruses. In the case of SARS-CoV-2, the nasal cavity not only constitutes an important viral entry point, but also a primary site of infection (Sungnak W. et al. Nat. Med. 26:681–687. https://doi.org/10.1038/s41591-020-0868-6 , 2020).. Although face masks are a well-established preventive measure, development of novel and easy-to-use prophylactic measures would be highly beneficial in fighting viral spread and the subsequent emergence of variants of concern (Tao K. et al. Nat Rev Genet 22:757–773. https://doi.org/10.1038/s41576-021-00408-x , 2021). Our group has been working on optimizing a nasal spray delivery system that deposits particles inside the susceptible regions of the nasal cavity to act as a mechanical barrier to impede viral entry. Here, we identify computationally the delivery parameters that maximize the protection offered by this barrier. We introduce the computational approach and quantify the protection rate obtained as a function of a broad range of delivery parameters. We also introduce a modified design and demonstrate that it significantly improves deposition, thus constituting a viable approach to protect against nasal infection of airborne viruses. We then discuss our findings and the implications of this novel system on the prevention of respiratory diseases and targeted drug delivery.more » « less
-
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.more » « less
-
Abstract Objective . Retinal implants have been developed to electrically stimulate healthy retinal neurons in the progressively degenerated retina. Several stimulation approaches have been proposed to improve the visual percept induced in patients with retinal prostheses. We introduce a computational model capable of simulating the effects of electrical stimulation on retinal neurons. Leveraging this computational platform, we delve into the underlying mechanisms influencing the sensitivity of retinal neurons’ response to various stimulus waveforms. Approach . We implemented a model of spiking bipolar cells (BCs) in the magnocellular pathway of the primate retina, diffuse BC subtypes (DB4), and utilized our multiscale admittance method (AM)-NEURON computational platform to characterize the response of BCs to epiretinal electrical stimulation with monophasic, symmetric, and asymmetric biphasic pulses. Main results . Our investigations yielded four notable results: (a) the latency of BCs increases as stimulation pulse duration lengthens; conversely, this latency decreases as the current amplitude increases. (b) Stimulation with a long anodic-first symmetric biphasic pulse (duration > 8 ms) results in a significant decrease in spiking threshold compared to stimulation with similar cathodic-first pulses (from 98.2 to 57.5 µ A). (c) The hyperpolarization-activated cyclic nucleotide-gated channel was a prominent contributor to the reduced threshold of BCs in response to long anodic-first stimulus pulses. (d) Finally, extending the study to asymmetric waveforms, our results predict a lower BCs threshold using asymmetric long anodic-first pulses compared to that of asymmetric short cathodic-first stimulation. Significance . This study predicts the effects of several stimulation parameters on spiking BCs response to electrical stimulation. Of importance, our findings shed light on mechanisms underlying the experimental observations from the literature, thus highlighting the capability of the methodology to predict and guide the development of electrical stimulation protocols to generate a desired biological response, thereby constituting an ideal testbed for the development of electroceutical devices.more » « less
-
Retinal prosthetic systems have been developed to help blind patients suffering from retinal degenerative diseases gain some useful form of vision. Various experimental and computational studies have been performed to test electrical stimulation strategies that can improve the performance of these devices. Detailed computational models of retinal neurons, such as retinal ganglion cells (RGCs) and bipolar cells (BCs), allow us to explore the mechanisms underlying the response of cells to electrical stimulation. While electrophysiological studies have shown the presence of voltage-gated ionic channels in different regions of BCs, many of the existing cone BCs models are assumed to be passive or only contain calcium channels at the synaptic terminals. We have utilized our Admittance Method (AM)-NEURON computational platform to implement a more realistic model of ON-BCs. Our model closely replicates the recent patch-clamp experiments directly measuring the response of ON-BCs to epiretinal electrical stimulation and thereby predicts the regional distributions of the ionic channels. Our computational results further indicate that outward potassium current strongly contributes to the depolarizing voltage transient of ON-BCs in response to electrical stimulation.more » « less
An official website of the United States government
